
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Virtual Infrastructure Operating System 
(VIOS) 

 

EF-PI SMA inverter driver and manager 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Status:  Concept 
Version: 1.1 
Date:  10-6-2015  

  

 

 



2 

Contents 

1 SMA Inverter (PV panel) ................................................................................................................... 3 
1.1 SMA resource driver .................................................................................................................................... 3 
1.1.1 Configuration ............................................................................................................................................... 3 
1.1.2 Power State ................................................................................................................................................. 4 
1.1.3 Control Parameters ..................................................................................................................................... 4 
1.1.4 Widget ......................................................................................................................................................... 5 
1.1.5 Bluetooth communication .......................................................................................................................... 5 
1.2 Uncontrolled resource manager ................................................................................................................. 5 
1.2.1 Configuration ............................................................................................................................................... 5 
1.2.2 Registration ................................................................................................................................................. 6 
1.2.3 Control Space updates ................................................................................................................................ 6 
1.2.4 Allocations ................................................................................................................................................... 7 

 
  



3 

1 SMA Inverter (PV panel) 

This document describes the integration of the SMA inverter within EF-pi. 
 

 

Figure 1: Overview of components for SMA inverter 

Figure 1 presents an overview of all components (hard- and software) involved. The PV panel are 
connected via a cable with the SMA inverter. The inverter provides information on PV generation such 
as current power and the total amount of energy that has been produced. 
 
The SMA inverter features a Bluetooth interface which is used by the SMA driver to obtain the 
information about the PV performance. The driver makes this information available for the 
Uncontrolled Manager that translate this into the messages that are specified by the Energy Flexibility 
Interface. 

1.1 SMA resource driver 

1.1.1 Configuration 

 
    public interface Config { 
        @Meta.AD(description = "The unique resource identifier", deflt = "sma-
inverter") 
        String resourceId(); 
 
        @Meta.AD(description = "The MAC Address of the bluetooth receiver on the SMA 
inverter", deflt = "00802529EC47") 
        String macAddress(); 
 
        @Meta.AD(description = "The password of the bluetooth receiver (default 
0000)", deflt = "0000") 
        String password(); 
 



4 

        @Meta.AD(description = "The latitude of the inverter location, used for 
sunset/rise", deflt = "0") 
        String latitude(); 
 
        @Meta.AD(description = "The longitude of the inverter location, used for 
sunset/rise", deflt = "0") 
        String longitude(); 
 
        @Meta.AD(description = "Offset in seconds to start before sunrise and end 
after sunset", deflt = "900") 
        int sunUpOffset(); 
 
        @Meta.AD(description = "The timezone identifier of the machine running this 
code, used for sunset/rise", 
                 deflt = "Europe/Amsterdam") 
        String timezone(); 
 
        @Meta.AD(description = "The update frequency at which the inverter will be 
read in seconds", deflt = "60") 
        int updateFrequency(); 

    } 

 
The code block shows the configuration parameters of the SMA driver. The most important parameters 
are the MAC address and the password that are required to communicate with the SMA inverter. 

1.1.2 Power State 

package org.flexiblepower.ral.drivers.uncontrolled; 
 
import javax.measure.Measurable; 
import javax.measure.quantity.Power; 
 
import org.flexiblepower.ral.ResourceState; 
 
public interface PowerState extends ResourceState { 
    /** 
     * @return The current power consumption (or production if negative). 
     */ 
    Measurable<Power> getCurrentUsage(); 

} 

 
The driver sends a PowerState object to the Uncontrolled Manager. This PowerState class is not part of 
the SMA Resource Driver itself. It is a generic interface that can be used by various kind of uncontrolled 
resource drivers. This interface only has one method (getCurrentUsage) that simply returns the power 
that is currently being consumed or produced. 

1.1.3 Control Parameters 

The SMA inverter cannot be controlled, therefore there are no control parameters required for this 
driver. 



5 

1.1.4 Widget 

 

Figure 2: The widget for the SMA resource driver 

The widget for the SMA inverter shows the following information: 

 Current Power production in Watts. 

 The total amount of energy produced today in kiloWattHours. 

 The total amount of energy produced in the lifetime of the inverter in kiloWattHours. 

 A boolean to indicate whether the sun is up or not. The driver uses the latitude and longitude to 
determine when the sun rises and sets. Latitude and longitude are configurable (see section 
1.1.1). When the sun is down the SMA inverter goes into standby modus in order to save 
energy. 

1.1.5 Bluetooth communication 

Communication with the SMA inverter is made possible with Bluetooth. However the Bluetooth 
implementation of the SMA inverter does not completely follow the standard. This has to do with the 
way the messages are formatted. Because of these deviations a lot effort had to be put in to make the 
Bluetooth communication work. 

1.2 Uncontrolled resource manager 

The Uncontrolled resource manager is a generic manager for all kinds of uncontrolled appliances. As 
long as the driver of an appliance uses the PowerState class (see section 1.1.2), it can be coupled to this 
resource manager. 
 
This generic uncontrolled resource manager does not support curtailment. However, this is not an issue 
for the SMA inverter that was used within the VIOS project as it does not have a curtailment option. 

1.2.1 Configuration 

 
    @Meta.OCD 
    interface Config { 
        @Meta.AD(deflt = "uncontrolled", description = "Resource identifier") 
        String resourceId(); 
 
        @Meta.AD(deflt = "20", description = "Expiration of the ControlSpaces [s]", 
required = false) 



6 

        int expirationTime(); 
 
        @Meta.AD(deflt = "false", description = "Show simple widget") 
        boolean showWidget(); 

    } 

 
The code snippet above shows the configuration options, which are quite limited. 

 A resource ID can be entered to uniquely identifty this resource manager. 

 An expiration time for the control spaces can be set. 

 One can choose to show a widget. This widget is very simple; it only shows the current 
production or consumption of the uncontrolled appliance. In this case the widget is not being 
used as the SMA driver already features a widget that provides more information than this one. 

1.2.2 Registration 

The code snippet below shows the registration of the Uncontrolled resource manager. 
 

    protected List<? extends ResourceMessage> startRegistration(PowerState state) { 
        changedState = context.currentTime(); 
        allocationDelay = Measure.valueOf(5, SI.SECOND); 
        ConstraintListMap constraintList = ConstraintListMap.electricity(null); // 
this version of the uncontrolled 
                                                                                // 
manager does not support 
                                                                                // 
curtailments... 
        UncontrolledRegistration reg = new UncontrolledRegistration(getResourceId(), 
                                                                    changedState, 
                                                                    allocationDelay, 
                                                                    
CommoditySet.onlyElectricity, constraintList); 
        UncontrolledUpdate update = createUncontrolledUpdate(state); 
        return Arrays.asList(reg, update); 

    } 

 
As can be seen in the code this resource manager only supports electricity and cannot handle 
curtailments. 

1.2.3 Control Space updates 

 
    private UncontrolledUpdate createUncontrolledUpdate(PowerState state) { 
        Measurable<Power> currentUsage = state.getCurrentUsage(); 
        CommodityMeasurables measurables = 
CommodityMeasurables.electricity(currentUsage); 
        UncontrolledUpdate update = new UncontrolledMeasurement(getResourceId(), 
                                                                changedState, 
                                                                
context.currentTime(), 
                                                                measurables); 
        return update; 

    } 

 



7 

A new Control Space update is constructed every time a new PowerState object is received. It simply 
takes the current power usage (generation is negative usage) and puts that in the Control Space 
update. 

1.2.4 Allocations 

The Uncontrolled resource manager has no method to process allocations since it does support 
curtailments. 


